Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Bioscience ; 72(11): 1118-1130, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36325105

RESUMO

Wallacea-the meeting point between the Asian and Australian fauna-is one of the world's largest centers of endemism. Twenty-three million years of complex geological history have given rise to a living laboratory for the study of evolution and biodiversity, highly vulnerable to anthropogenic pressures. In the present article, we review the historic and contemporary processes shaping Wallacea's biodiversity and explore ways to conserve its unique ecosystems. Although remoteness has spared many Wallacean islands from the severe overexploitation that characterizes many tropical regions, industrial-scale expansion of agriculture, mining, aquaculture and fisheries is damaging terrestrial and aquatic ecosystems, denuding endemics from communities, and threatening a long-term legacy of impoverished human populations. An impending biodiversity catastrophe demands collaborative actions to improve community-based management, minimize environmental impacts, monitor threatened species, and reduce wildlife trade. Securing a positive future for Wallacea's imperiled ecosystems requires a fundamental shift away from managing marine and terrestrial realms independently.

2.
Microbiol Spectr ; 10(3): e0111722, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35647697

RESUMO

In intertidal systems, the type and role of interactions among sediment microorganisms, animals, plants and abiotic factors are complex and not well understood. Such interactions are known to promote nutrient provision and cycling, and their dynamics and relationships may be of particular importance in arid microtidal systems characterized by minimal nutrient input. Focusing on an arid mangrove ecosystem on the central Red Sea coast, we investigated the effect of crab bioturbation intensity (comparing natural and manipulated high levels of bioturbation intensity) on biogeochemistry and bacterial communities of mangrove sediments, and on growth performance of Avicennia marina, over a period of 16 months. Along with pronounced seasonal patterns with harsh summer conditions, in which high sediment salinity, sulfate and temperature, and absence of tidal flooding occur, sediment bacterial diversity and composition, sediment physicochemical conditions, and plant performance were significantly affected by crab bioturbation intensity. For instance, bioturbation intensity influenced components of nitrogen, carbon, and phosphate cycling, bacterial relative abundance (i.e., Bacteroidia, Proteobacteria and Rhodothermi) and their predicted functionality (i.e., chemoheterotrophy), likely resulting from enhanced metabolic activity of aerobic bacteria. The complex interactions among bacteria, animals, and sediment chemistry in this arid mangrove positively impact plant growth. We show that a comprehensive approach targeting multiple biological levels provides useful information on the ecological status of mangrove forests. IMPORTANCE Bioturbation is one of the most important processes that governs sediment biocenosis in intertidal systems. By facilitating oxygen penetration into anoxic layers, bioturbation alters the overall sediment biogeochemistry. Here, we investigate how high crab bioturbation intensity modifies the mangrove sediment bacterial community, which is the second largest component of mangrove sediment biomass and plays a significant role in major biogeochemical processes. We show that the increase in crab bioturbation intensity, by ameliorating the anoxic condition of mangrove sediment and promoting sediment bacterial diversity in favor of a beneficial bacterial microbiome, improves mangrove tree growth in arid environments. These findings have significant implications because they show how crabs, by farming the mangrove sediment, can enhance the overall capacity of the system to sustain mangrove growth, fighting climate change.


Assuntos
Avicennia , Braquiúros , Microbiota , Animais , Bactérias/genética , Ecossistema , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Áreas Alagadas
4.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34312251

RESUMO

Deforestation results in habitat fragmentation, decreasing diversity, and functional degradation. For mangroves, no data are available on the impact of deforestation on the diversity and functionality of the specialized invertebrate fauna, critical for their functioning. We compiled a global dataset of mangrove invertebrate fauna comprising 364 species from 16 locations, classified into 64 functional entities (FEs). For each location, we calculated taxonomic distinctness (Δ+), functional richness (FRi), functional redundancy (FRe), and functional vulnerability (FVu) to assess functional integrity. Δ+ and FRi were significantly related to air temperature but not to geomorphic characteristics, mirroring the global biodiversity anomaly of mangrove trees. Neither of those two indices was linked to forest area, but both sharply decreased in human-impacted mangroves. About 60% of the locations showed an average FRe < 2, indicating that most of the FEs comprised one species only. Notable exceptions were the Eastern Indian Ocean and west Pacific Ocean locations, but also in this region, 57% of the FEs had no redundancy, placing mangroves among the most vulnerable ecosystems on the planet. Our study shows that despite low redundancy, even small mangrove patches host truly multifunctional faunal assemblages, ultimately underpinning their services. However, our analyses also suggest that even a modest local loss of invertebrate diversity could have significant negative consequences for many mangroves and cascading effects for adjacent ecosystems. This pattern of faunal-mediated ecosystem functionality is crucial for assessing the vulnerability of mangrove forests to anthropogenic impact and provides an approach to planning their effective conservation and restoration.


Assuntos
Invertebrados , Áreas Alagadas , Animais , Biodiversidade , Oceano Índico , Invertebrados/fisiologia , Oceano Pacífico , Árvores
5.
Mar Pollut Bull ; 170: 112579, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34126441

RESUMO

European oyster (Ostrea edulis) restoration often requires the timely deployment of shell habitat for larval settlement. To inform this increasingly popular process, the present study investigated temporal and spatial abundance patterns of O. edulis larvae in a rare commercial fishery (Loch Ryan, Scotland, UK). Patterns in larval abundance were analysed against variability in temperature, salinity, chlorophyll, oxygen, tidal/moon phase, light, date, and location. 'Temperature sum' (sum total of degrees per day above 7 °C) was the most significant seasonal predictor of larval abundance; with a peak at 617 degree-days. Oyster larval abundance did not significantly vary between oyster bed and non-bed habitats but was significantly higher in the mid and near-surface part of the water column. The findings are discussed in the context of emerging international restoration initiatives and have implications for: where habitat restoration would be successful; the prediction of larval connectivity between sites; and a transferable indicator to optimise shell-habitat deployment timing.


Assuntos
Ostrea , Animais , Ecossistema , Larva , Escócia , Alimentos Marinhos
6.
Parasit Vectors ; 13(1): 62, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32051019

RESUMO

BACKGROUND: Red Vent Syndrome (RVS), a haemorrhagic inflammation of the vent region in Atlantic salmon, is associated with high abundance of Anisakis simplex (s.s.) third-stage larvae (L3) in the vent region. Despite evidence suggesting that increasing A. simplex (s.s.) intensity is a causative factor in RVS aetiology, the definitive cause remains unclear. METHODS: A total of 117 Atlantic salmon were sampled from commercial fisheries on the East, West, and North coasts of Scotland and examined for ascaridoid parasites. Genetic identification of a subsample of Anisakis larvae was performed using the internal transcribed spacer (ITS) region of ribosomal DNA. To assess the extent of differentiation of feeding grounds and dietary composition, stable isotope analysis of carbon and nitrogen was carried out on Atlantic salmon muscle tissue. RESULTS: In the present study, the obtained ITS rDNA sequences matched A. simplex (s.s.) sequences deposited in GenBank at 99-100%. Not all isolated larvae (n = 30,406) were genetically identified. Therefore, the morphotype found in this study is referred to as A. simplex (sensu lato). Anisakis simplex (s.l.) was the most prevalent (100%) nematode with the highest mean intensity (259.9 ± 197.3), in comparison to Hysterothylacium aduncum (66.7%, 6.4 ± 10.2) and Pseudoterranova decipiens (s.l.) (14.5%, 1.4 ± 0.6). The mean intensity of A. simplex (s.l.) represents a four-fold increase compared to published data (63.6 ± 31.9) from salmon captured in Scotland in 2009. Significant positive correlations between A. simplex (s.l.) larvae intensities from the body and the vent suggest that they play a role in the emergence of RVS. The lack of a significant variation in stable isotope ratios of Atlantic salmon indicates that diet or feeding ground are not driving regional differences in A. simplex (s.l.) intensities. CONCLUSIONS: This paper presents the most recent survey for ascaridoid parasites of wild Atlantic salmon from three coastal regions in Scotland. A significant rise in A. simplex (s.l.) intensity could potentially increase both natural mortality rates of Atlantic salmon and possible risks for salmon consumers due to the known zoonotic role of A. simplex (s.s.) and A. pegreffii within the A. simplex (s.l.) species complex.


Assuntos
Anisaquíase/veterinária , Salmo salar/parasitologia , Alimentos Marinhos/parasitologia , Animais , Anisaquíase/diagnóstico , Anisakis/genética , Anisakis/patogenicidade , DNA Intergênico/genética , DNA Ribossômico/genética , Doenças dos Peixes/parasitologia , Larva/genética , Escócia
8.
Sci Total Environ ; 689: 126-132, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31271981

RESUMO

Responses of marine invertebrates to anthropogenic noise are insufficiently known, impeding our understanding of ecosystemic impacts of noise and the development of mitigation strategies. We show that the blue mussel, Mytilus edulis, is negatively affected by ship-noise playbacks across different levels of biological organization. We take a novel mechanistic multi-method approach testing and employing established ecotoxicological techniques (i.e. Comet Assay and oxidative stress tests) in combination with behavioral and physiological biomarkers. We evidence, for the first time in marine species, noise-induced changes in DNA integrity (six-fold higher DNA single strand-breaks in haemocytes and gill epithelial cells) and oxidative stress (68% increased TBARS in gill cells). We further identify physiological and behavioral changes (12% reduced oxygen consumption, 60% increase in valve gape, 84% reduced filtration rate) in noise-exposed mussels. By employing established ecotoxicological techniques we highlight impacts not only on the organismal level, but also on ecological performance. When investigating species that produce little visually obvious responses to anthropogenic noise, the above mentioned endpoints are key to revealing sublethal effects of noise and thus enable a better understanding of how this emerging, but often overlooked stressor, affects animals without complex behaviors. Our integrated approach to noise research can be used as a model for other invertebrate species and faunal groups, and inform the development of effective methods for assessing and monitoring noise impacts. Given the observed negative effects, noise should be considered a potential confounding factor in studies involving other stressors.


Assuntos
Dano ao DNA/efeitos da radiação , Mytilus edulis/efeitos da radiação , Ruído/efeitos adversos , Estresse Oxidativo/efeitos da radiação , Animais , Biomarcadores/análise , Ensaio Cometa , Mytilus edulis/fisiologia
9.
Sci Rep ; 7(1): 11917, 2017 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-28928433

RESUMO

Seagrass meadows provide numerous ecosystem services and their rapid global loss may reduce human welfare as well as ecological integrity. In common with the other 'blue carbon' habitats (mangroves and tidal marshes) seagrasses are thought to provide coastal defence and encourage sediment stabilisation and surface elevation. A sophisticated understanding of sediment elevation dynamics in mangroves and tidal marshes has been gained by monitoring a wide range of different sites, located in varying hydrogeomorphological conditions over long periods. In contrast, similar evidence for seagrasses is sparse; the present study is a contribution towards filling this gap. Surface elevation change pins were deployed in four locations, Scotland, Kenya, Tanzania and Saudi Arabia, in both seagrass and unvegetated control plots in the low intertidal and shallow subtidal zone. The presence of seagrass had a highly significant, positive impact on surface elevation at all sites. Combined data from the current work and the literature show an average difference of 31 mm per year in elevation rates between vegetated and unvegetated areas, which emphasizes the important contribution of seagrass in facilitating sediment surface elevation and reducing erosion. This paper presents the first multi-site study for sediment surface elevation in seagrasses in different settings and species.


Assuntos
Alismatales/crescimento & desenvolvimento , Organismos Aquáticos/crescimento & desenvolvimento , Sedimentos Geológicos , Quênia , Arábia Saudita , Escócia , Tanzânia
10.
PLoS One ; 11(12): e0167375, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27907093

RESUMO

Mangrove crabs influence ecosystem processes through bioturbation and/or litter feeding. In Brazilian mangroves, the abundant and commercially important crab Ucides cordatus is the main faunal modifier of microtopography establishing up to 2 m deep burrows. They process more than 70% of the leaf litter and propagule production, thus promoting microbial degradation of detritus and benefiting microbe-feeding fiddler crabs. The accelerated nutrient turn-over and increased sediment oxygenation mediated by U. cordatus may enhance mangrove tree growth. Such positive feed-back loop was tested in North Brazil through a one year crab removal experiment simulating increased harvesting rates in a mature Rhizophora mangle forest. Investigated response parameters were sediment salinity, organic matter content, CO2 efflux rates of the surface sediment, and reduction potential. We also determined stipule fall of the mangrove tree R. mangle as a proxy for tree growth. Three treatments were applied to twelve experimental plots (13 m × 13 m each): crab removal, disturbance control and control. Within one year, the number of U. cordatus burrows inside the four removal plots decreased on average to 52% of the initial number. Despite this distinct reduction in burrow density of this large bioturbator, none of the measured parameters differed between treatments. Instead, most parameters were clearly influenced by seasonal changes in precipitation. Hence, in the studied R. mangle forest, abiotic factors seem to be more important drivers of ecosystem processes than factors mediated by U. cordatus, at least within the studied timespan of one year.


Assuntos
Dióxido de Carbono/metabolismo , Ecossistema , Áreas Alagadas , Animais , Braquiúros/crescimento & desenvolvimento , Braquiúros/metabolismo , Brasil , Sedimentos Geológicos , Salinidade , Ondas de Maré , Árvores/crescimento & desenvolvimento , Árvores/metabolismo
11.
PLoS One ; 11(8): e0160268, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27487195

RESUMO

Coral reefs worldwide are affected by increasing dissolved inorganic carbon (DIC) and organic carbon (DOC) concentrations due to ocean acidification (OA) and coastal eutrophication. These two stressors can occur simultaneously, particularly in near-shore reef environments with increasing anthropogenic pressure. However, experimental studies on how elevated DIC and DOC interact are scarce and fundamental to understanding potential synergistic effects and foreseeing future changes in coral reef function. Using an open mesocosm experiment, the present study investigated the impact of elevated DIC (pHNBS: 8.2 and 7.8; pCO2: 377 and 1076 µatm) and DOC (added as 833 µmol L-1 of glucose) on calcification and photosynthesis rates of two common calcifying green algae, Halimeda incrassata and Udotea flabellum, in a shallow reef environment. Our results revealed that under elevated DIC, algal photosynthesis decreased similarly for both species, but calcification was more affected in H. incrassata, which also showed carbonate dissolution rates. Elevated DOC reduced photosynthesis and calcification rates in H. incrassata, while in U. flabellum photosynthesis was unaffected and thalus calcification was severely impaired. The combined treatment showed an antagonistic effect of elevated DIC and DOC on the photosynthesis and calcification rates of H. incrassata, and an additive effect in U. flabellum. We conclude that the dominant sand dweller H. incrassata is more negatively affected by both DIC and DOC enrichments, but that their impact could be mitigated when they occur simultaneously. In contrast, U. flabellum can be less affected in coastal eutrophic waters by elevated DIC, but its contribution to reef carbonate sediment production could be further reduced. Accordingly, while the capacity of environmental eutrophication to exacerbate the impact of OA on algal-derived carbonate sand production seems to be species-specific, significant reductions can be expected under future OA scenarios, with important consequences for beach erosion and coastal sediment dynamics.


Assuntos
Calcificação Fisiológica/fisiologia , Compostos Inorgânicos de Carbono/metabolismo , Carbono/metabolismo , Clorófitas/metabolismo , Recifes de Corais , Compostos Orgânicos/metabolismo , Fotossíntese/fisiologia , Animais , Dióxido de Carbono/metabolismo , Região do Caribe , Clorófitas/química , Concentração de Íons de Hidrogênio , Água do Mar
12.
PLoS One ; 11(3): e0149598, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26959499

RESUMO

Coral reefs are facing major global and local threats due to climate change-induced increases in dissolved inorganic carbon (DIC) and because of land-derived increases in organic and inorganic nutrients. Recent research revealed that high availability of labile dissolved organic carbon (DOC) negatively affects scleractinian corals. Studies on the interplay of these factors, however, are lacking, but urgently needed to understand coral reef functioning under present and near future conditions. This experimental study investigated the individual and combined effects of ambient and high DIC (pCO2 403 µatm/ pHTotal 8.2 and 996 µatm/pHTotal 7.8) and DOC (added as Glucose 0 and 294 µmol L-1, background DOC concentration of 83 µmol L-1) availability on the physiology (net and gross photosynthesis, respiration, dark and light calcification, and growth) of the scleractinian coral Acropora millepora (Ehrenberg, 1834) from the Great Barrier Reef over a 16 day interval. High DIC availability did not affect photosynthesis, respiration and light calcification, but significantly reduced dark calcification and growth by 50 and 23%, respectively. High DOC availability reduced net and gross photosynthesis by 51% and 39%, respectively, but did not affect respiration. DOC addition did not influence calcification, but significantly increased growth by 42%. Combination of high DIC and high DOC availability did not affect photosynthesis, light calcification, respiration or growth, but significantly decreased dark calcification when compared to both controls and DIC treatments. On the ecosystem level, high DIC concentrations may lead to reduced accretion and growth of reefs dominated by Acropora that under elevated DOC concentrations will likely exhibit reduced primary production rates, ultimately leading to loss of hard substrate and reef erosion. It is therefore important to consider the potential impacts of elevated DOC and DIC simultaneously to assess real world scenarios, as multiple rather than single factors influence key physiological processes in coral reefs.


Assuntos
Antozoários/efeitos dos fármacos , Antozoários/fisiologia , Carbono/farmacologia , Recifes de Corais , Compostos Inorgânicos/farmacologia , Compostos Orgânicos/farmacologia , Animais , Análise da Demanda Biológica de Oxigênio , Carbonatos/análise , Dureza , Oxigênio/análise , Solubilidade
13.
PLoS One ; 9(10): e109532, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25313661

RESUMO

Ucides cordatus is an abundant mangrove crab in Brazil constructing burrows of up to 2 m depth. Sediment around burrows may oxidize during low tides. This increase in sediment-air contact area may enhance carbon degradation processes. We hypothesized that 1) the sediment CO2 efflux rate is greater with burrows than without and 2) the reduction potential in radial profiles in the sediment surrounding the burrows decreases gradually, until approximating non-bioturbated conditions. Sampling was conducted during the North Brazilian wet season at neap tides. CO2 efflux rates of inhabited burrows and plain sediment were measured with a CO2/H2O gas analyzer connected to a respiration chamber. Sediment redox potential, pH and temperature were measured in the sediment surrounding the burrows at horizontal distances of 2, 5, 8 and 15 cm at four sediment depths (1, 10, 30 and 50 cm) and rH values were calculated. Sediment cores (50 cm length) were taken to measure the same parameters for plain sediment. CO2 efflux rates of plain sediment and individual crab burrows with entrance diameters of 7 cm were 0.7-1.3 µmol m(-2) s(-1) and 0.2-0.4 µmol burrows(-1) s(-1), respectively. CO2 released from a Rhizophora mangle dominated forest with an average of 1.7 U. cordatus burrows(-1) m(-2) yielded 1.0-1.7 µmol m(-2) s(-1), depending on the month and burrow entrance diameter. Laboratory experiments revealed that 20-60% of the CO2 released by burrows originated from crab respiration. Temporal changes in the reduction potential in the sediment surrounding the burrows did not influence the CO2 release from burrows. More oxidized conditions of plain sediment over time may explain the increase in CO2 release until the end of the wet season. CO2 released by U. cordatus and their burrows may be a significant pathway of CO2 export from mangrove sediments and should be considered in mangrove carbon budget estimates.


Assuntos
Braquiúros/metabolismo , Dióxido de Carbono/metabolismo , Animais , Brasil , Monitoramento Ambiental , Florestas , Sedimentos Geológicos/química , Concentração de Íons de Hidrogênio , Rhizophoraceae/metabolismo , Temperatura
14.
An Acad Bras Cienc ; 82(2): 313-21, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20563412

RESUMO

Megalopae of many decapod crab species accelerate their development time to metamorphosis (TTM) when exposed to natural physical and/or chemical cues characteristic of the parental habitat. In the present study, the influence of natural settlement cues on the moulting rates and development TTM in megalopae of the fiddler crab Uca vocator was investigated. The effects of mud from different habitats (including well-preserved and degraded-polluted mangrove habitats) and conspecific adult 'odours' (seawater conditioned with crabs) on the induction of metamorphosis were compared with filtered pure seawater (control). 95 to 100% of the megalopae successfully metamorphosed to first juvenile crab stage in all treatments, including the control. However, the development TTM differed significantly among treatments. Settlement cues significantly shortened development, while moulting was delayed in their absence. The fact that megalopae responded to metamorphosis-stimulating cues originating from both adult and non-adult benthic habitats demonstrates that settlement in this species may occur in a wider range of habitats within the mangrove ecosystem, including impacted areas.


Assuntos
Braquiúros/crescimento & desenvolvimento , Ecossistema , Metamorfose Biológica/fisiologia , Odorantes , Animais , Braquiúros/fisiologia , Sinais (Psicologia) , Feminino , Larva/crescimento & desenvolvimento , Masculino , Água do Mar , Fatores de Tempo
15.
An. acad. bras. ciênc ; 82(2): 313-321, June 2010. graf, tab
Artigo em Inglês | LILACS | ID: lil-548412

RESUMO

Megalopae of many decapod crab species accelerate their development time to metamorphosis (TTM) when exposed to natural physical and/or chemical cues characteristic of the parental habitat. In the present study, the influence of natural settlement cues on the moulting rates and development TTM in megalopae of the fiddler crab Uca vocator was investigated. The effects of mud from different habitats (including well-preserved and degraded-polluted mangrove habitats) and conspecific adult 'odours' (seawater conditioned with crabs) on the induction of metamorphosis were compared with filtered pure seawater (control). 95 to 100 percent of the megalopae successfully metamorphosed to first juvenile crab stage in all treatments, including the control. However, the development TTM differed significantly among treatments. Settlement cues significantly shortened development, while moulting was delayed in their absence. The fact that megalopae responded to metamorphosis-stimulating cues originating from both adult and non-adult benthic habitats demonstrates that settlement in this species may occur in a wider range of habitats within the mangrove ecosystem, including impacted areas.


Megalopas de muitas espécies de caranguejos decápodes aceleram seu período de desenvolvimento até a metamorfose (TOM) quando são expostas a estímulos naturais físicos e/ou químicos característicos do habitat parental. No presente estudo, a influência de estímulos naturais sobre as taxas de muda e sobre o PDM foi investigada nas megalopas do caranguejo violinista Uca vocator. Os efeitos da (i) lama de diferentes habitats (incluindo habitats de um manguezal bem preservado e de um degradado e poluído) e (ii) 'odores' dos adultos conspecíficos (água do mar acondicionada com caranguejos) sobre a indução da metamorfose foram comparados com (iii) água do mar pura e filtrada (controle). 95 a 100 por cento das megalopas realizaram a metamorfose com sucesso para o primeiro estágio de caranguejo juvenil em todos os tratamentos, incluindo o controle. No entanto, o PDM diferiu significativamente entre os tratamentos. Os estímulos encurtaram significativamente o desenvolvimento, enquanto que a muda foi retardada na ausência deles. O fato de que as megalopas responderam aos estímulos indutores da metamorfose oriundos de ambos os habitats bentônicos dos adultos e de habitats onde eles são ausentes, demonstra que o assentamento nesta espécie pode ocorrer em uma grande variedade de habitats dentro do ecossistema de manguezal, incluindo áreas impactadas.


Assuntos
Animais , Feminino , Masculino , Braquiúros/crescimento & desenvolvimento , Ecossistema , Metamorfose Biológica/fisiologia , Odorantes , Braquiúros/fisiologia , Sinais (Psicologia) , Larva/crescimento & desenvolvimento , Água do Mar , Fatores de Tempo
16.
Acta amaz ; 38(2): 345-350, 2008. ilus
Artigo em Português | LILACS | ID: lil-488745

RESUMO

O presente trabalho estudou o efeito da salinidade na sobrevivência e na duração do desenvolvimento larval do caranguejo-uçá, Ucides cordatus (do estuário do Rio Caeté, Norte do Brasil), até a fase de megalopa em sete tratamentos de salinidade (0, 5, 10, 15, 20, 25 e 30). A salinidade afetou significativamente a sobrevivência das larvas zoea, no entanto não afetou a duração do desenvolvimento larval (20,77 ± 1,56 dias). Nas salinidades 0, 5 e 10 houve total mortalidade das larvas zoea. Somente a partir da salinidade 15 observou-se um desenvolvimento completo até a fase de megalopa. A taxa de sobrevivência foi maior em salinidade 30 (72 por cento) e menor em 15 (16 por cento). A reduzida taxa de sobrevivência das larvas zoea de U. cordatus, em salinidades baixas, indica a necessidade de dispersão larval do estuário para as águas costeiras onde as condições de salinidade para o desenvolvimento larval são mais favoráveis. Caso contrário se não houvesse a dispersão, a reduzida salinidade das águas estuarinas no período chuvoso, causaria uma elevada mortalidade, afetando desta forma o recrutamento, a manutenção e o crescimento da população de U. cordatus nos manguezais.


The present work studied the effect of salinity on the survival and duration of larval development of the mangrove crab, Ucides cordatus (from the Caeté River estuary, North of Brazil) until the megalopal phase in seven salinity treatments (0, 5, 10, 15, 20, 25 e 30). Salinity significantly affected the survival of the zoea larvae, however it did not affect the duration of the larval development (20.77 ± 1.56 days). In salinity 0, 5 and 10 all zoea larvae died. Only from off salinity 15, complete development until the megalopal phase occurred. The survival rate was highest in salinity 30 (72 percent) and lowest in 15 (16 percent). The reduced survival rate of the U. cordatus zoea larvae, in low salinities, indicates the necessity of larval dispersion from the estuary to coastal waters, where salinity conditions for larval development are more favorable. Otherwise, if there was no dispersion, the reduced salinity of estuarine waters in the rainy season would cause a high mortality thereby affecting the recruitment, maintenance and growth of the U. cordatus population in the mangroves.


Assuntos
Xiphosura americana , Salinidade , Sobrevivência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...